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Figure 1. Solid texture coordinates stored as vertex colors of a model (a) are rasterized into a texture atlas (b). A procedural 
shader replaces the interpolated solid texture coordinates with colors (c), which are applied to the object using texture mapping. 

 

Abstract 
Shortly after its introduction in 1985, procedural solid texturing 
became a must-have tool in the production-quality graphics of the 
motion-picture industry. Now, over fifteen years later, we are 
finally able to provide this feature for the real-time consumer 
graphics used in videogames and virtual environments. A texture 
atlas is used to create a 2-D texture map of the 3-D solid texture 
coordinates for a given surface. Applying the procedural texture to 
this atlas results in a view-independent procedural solid texturing 
of the object. 

Texture atlases are known to suffer from sampling problems and 
seam artifacts. We discovered that the quality of this texturing 
method is independent of the continuity and distortion of the atlas, 
which have been focal points of previous atlas techniques. We 
instead develop new meshed atlases that ignore continuity and 
distortion in favor of a balanced distribution of as many texture 
samples as possible. These atlases are seam-free due to careful 
attention to their rasterization in the texture map, and can be MIP-
mapped using a balanced mesh-clustering algorithm. 
Techniques for fast procedural synthesis are also investigated, 
using either the host processor or with multipass graphics 
processor operations on the texture map. We used these atlas and 
synthesis techniques to create a real-time procedural solid texture 
design system. 
CR Categories: I.3.7 [Computer Graphics] Three-Dimensional 
Graphics and Realism (color, shading and texture). 
Keywords: Atlas, mesh partitioning, MIP-map, multipass 
rendering, procedural texturing, solid texturing, texture mapping. 

1. Introduction 
The concept of procedural solid texturing is well known [32][37], 
and has found widespread use in graphics [6]. Solid texturing 
simulates a sculpted appearance and directly generates texture 
coordinates regardless of surface topology. Procedural texturing 
makes solid texturing practical by computing the texture on 
demand (instead of accessing a stored volumetric array), and at a 

level detail limited only by numerical precision. These features 
were quickly adopted for production-quality rendering by the 
entertainment industry, and became a core component of the 
Renderman Shading Language [11]. 
With the acceleration of graphics processors outpacing the 
exponential growth of general processors, there have been several 
recent calls for real-time implementations of procedural shaders, 
e.g. [12][38]. Real-time procedural shaders would make 
videogame graphics richer, virtual environments more realistic and 
modeling software more faithful to its final result. Section 2 
describes previous implementations of real-time procedural 
texturing and shading systems, all requiring special-purpose 
graphics supercomputers or processors. 
Peercy et al. [35] recently took a large step toward this goal by 
developing a compiler that translated Renderman shaders into 
multipass OpenGL code. While complex Renderman shaders could 
not yet be rendered in real-time, this compiler showed that their 
implementation on graphics accelerators was at least feasible. They 
created new interactive shading language, ISL, to produce more 
efficient OpenGL shaders. 

Unfortunately, ISL did not introduce any new techniques for solid 
texturing, supporting it instead with texture volumes. While 
modern graphics accelerator boards now have enough texture 
memory to store a moderate resolution volume, and some even 
support texture compression, storing a 3-D dataset to produce a 2-
D surface texture is inefficient and an unnecessarily wasteful use 
of texture memory. Applying procedural texturing operations to an 
entire texture volume also wastes processing time. 
Apodaca [1] described how the texture map can be used to store 
the shading of a model. His technique shaded a mesh in world 
coordinates, but stored the resulting colors in a second “reference” 
copy of the mesh embedded in a 2-D texture map. The mesh could 
then be later shaded by applying the texture map instead of 
computing its original shading. 
We can use this technique to support view-independent procedural 
solid texturing. Consider a single triangle with 3-D solid texture 
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coordinates1 si and 2-D surface coordinates ui assigned to its 
vertices xi for i = 1,2,3. Figure 1a shows such triangles, plotted in 
model coordinates with color indicating their solid coordinates. We 
apply a procedural solid texture to the triangle (x1,x2,x3) in three 
steps. The first step rasterizes the triangle into a texture map using 
its surface texture coordinates (u1,u2,u3). This rasterization 
interpolates its vertices’ solid texture coordinates si across its face. 
Figure 1b shows each pixel (u,v) in the rasterization now contains 
the interpolated solid texture coordinates s(u,v). The second step 
executes a texturing procedure p() on these solid texture 
coordinates, resulting in the color c(u,v) = p(s(u,v)) shown in 
Figure 1c. This color table c(u,v) is a texture map that we apply to 
the original triangle (x1,x2,x3) via its surface coordinates ui, 
resulting in the view-independent procedural solid texturing shown 
in Figure 1d. 
This atlas technique was implemented as a tool to preview 
procedural solid textures in recent modeling packages [2], [45] 
though it suffered from sampling problems. Lapped textures [40] 
also used a texture atlas to allow the lapped texture swatches to be 
applied in a simple texture mapping operation, noting “the atlas 
representation is more portable, but may have sampling problems.” 
Section 3 describes the texture atlas in detail, and analyzes the 
artifacts it can cause. Poor coverage of the texture map by the atlas 
causes aliasing, whereas discontinuities in the atlas cause seams in 
the textured surface. Section 4 describes new atlases that overcome 
these artifacts, with atlases that cover more of the texture map and 
distributing the resulting samples more evenly to reduce texture 
magnification aliases. Section 4.3 describes how an atlas that can 
be MIP mapped to eliminate texture minification aliases. 
The use of an atlas enables procedural texturing operations to be 
applied to the texture map, and Section 5 describes how this step 
can be implemented efficiently on both the host and the graphics 
controller. Section 6 concludes with an interactive procedural solid 
texture editor, other applications of these methods and ideas for 
further investigation. 

2. Previous Work 
There have been several implementations of real-time procedural 
solid texturing over the past fifteen years, though they have either 
required high-performance graphics computers or special-purpose 
graphics hardware. 
Procedural solid texture has been available on parallel graphics 
supercomputers, such as the AT&T Pixel Machine [39] and UNC’s 
Pixel Planes 5 and PixelFlow [26]. The Pixel Machine in fact was 
used as a platform for exploring volumetric procedural solid 
texture spaces [36]. 

Rhoades et al. [42] developed a specialized assembly language, 
called T-code, for procedural shading on Pixel Planes 5. The T-
code interpreter included automatic differentiation to estimate the 
variation of the procedure across the domain of a pixel. This 
estimate of the variation was used as a filter width to antialias the 
procedural texture, by averaging the range of colors the procedure 
could generate within the pixel. 
Olano et al. [30] implemented a real-time subset of the Renderman 
shading language on Pixel Flow, including the ability to synthesize 
procedural solid textures. Standard Renderman shader tools 

_______________________________ 
1 To keep these two textures straight, we will use s  = (s,t,r) to indicate the solid texture 

coordinates and u = (u,v) to indicate the texture map coordinates. We will need to 
assign both kinds of coordinates to the vertices of a mesh. 

including automatic differentiation and clamping [28] were used to 
antialias the procedural textures. 
Hart et al. [14] designed a VLSI processor based around a single 
function capable of generating several of the most popular 
procedural solid textures. Procedural solid textures were 
transmitted to this hardware as a set of parameters to the texturing 
function. The derivative of the function was also implemented to 
automatically antialias the output, à la [42]. 
Current graphics libraries such as OpenGL [44] and Direct3D [24] 
support solid texturing with the management of homogeneous 3-D 
texture coordinates, and recent versions of these libraries support 
three-dimensional texture volumes that can be MIP-mapped to 
support antialiasing. 
Peercy et al. [35] developed a compiler that translated the 
Renderman shading language into OpenGL source code. The 
technique used multi-pass rendering and requires an OpenGL 1.2 
implementation with its imaging subset, as well as the floating-
point-framebuffer and pixel-feedback extensions. As mentioned in 
the introduction this method depends on texture volumes for solid 
texturing. 

3. The Texture Atlas 
A (surface) texture mapping u = φ(x) is a function from a surface 
into a compact subset of the plane called the texture map. The 
texture mapping need not be continuous, but usually consists of 
piecewise continuous parts φi() called charts. The area on the 
surface in model coordinates is called the chart domain whereas 
the area the domain maps to in the texture map is called the chart 
image. The collection of charts that forms a texture mapping  
φ() = ∪ φi() is called an atlas [27]. If the surface texture mapping is 
one-to-one, then its inverse φ-1() is a parameterization of the 
surface. Atlases often (but not always) parameterize the surface, 
such that each pixel in the texture map represents a unique location 
on the object surface2. 
Hence parameterization methods could be used to generate atlases. 
For example, MAPS [19] parameterizes a mesh of arbitrary 
topological type, using a simplified version of the mesh embedded 
in three-space to serve as the base domain of smoothed piecewise 
barycentric parameterizations. This base mesh and the 
parameterization it supports could be flattened into a 2-D texture 
map, but the same flattening could also create an atlas by directly 
flattening the original mesh. Texture atlases do not require the 
continuity and smooth differentiability that good parameterization 
strive for. 

Texture atlases have strived instead to minimize the distortion of 
its charts, and to minimize areas of discontinuity between chart 
images. Section 3.1 shows that distortion does not affect the 
quality of our method. Section 3.2 describes how discontinuities 
can cause seam artifacts, but we eliminate these artifacts later in 
Section 4.1. We instead offer two new measures of atlas quality: 
coverage (Sec. 3.3) and relative scale (Sec. 3.4), that are used to 
indicate the sampling fidelity offered by the atlas. Section 4 
proposed new atlas techniques that perform well with respect to 
these two new measures. 

3.1 Distortion 
The distortion of a texture mapping is responsible for the 
deformation of a fixed image as it is mapped onto a surface. 
_______________________________ 
2 In topology, the atlas is used to define manifolds. In this context the atlas need not 

be one-to-one and the range of its charts may overlap. 
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Previous techniques for creating atlases have focused on reducing 
the distortion of the charts [43], either by projection [1], 
deformation energy minimization [20][21][22], or interactive 
placement [33][34]. 

Chart images are often complex polygons, and must then be 
packed (without further distortion) efficiently into the texture map 
to construct the atlas. Automatic packing methods for complex 
polygons are improving [25], but have not yet surpassed the 
abilities of human experts in this area. 
Our use of a texture atlas for solid texturing is not directly affected 
by chart distortion. Solid texture coordinates are properly 
interpolated across the chart image in the texture map regardless of 
the difference in shape between the model-coordinate and the 
surface-texture-coordinate triangles. Chart distortion affects only 
the direction, or “grain” of the artifacts, but not their existence, as 
will be shown later in Figure 6. 

3.2 Discontinuity 
Texture atlases are discontinuous along the boundaries of their 
charts. Texture mapping can reveal these discontinuities as a 
rendering artifact known as a seam. Seams are pixels in the texture 
map along the edges of charts. They appear along the mesh edges 
as specks of the wrong color, either the texture map’s background 
color or a color from a different part of the texture. 
Previous techniques have reduced seams by maximizing the size 
and connectivity of the chart images in the texture atlas. For 
example, Maillot et al. [22] merged portions of the surface of 
similar curvature. These partitions improved the atlas continuity, 
resulting in fewer charts, though with complex boundaries. While 
this method reduced seams to the complex boundaries of fewer 
charts, it did not eliminate them. 
Seams appear because the rasterization rules differ from texture 
magnification rules. The rules of polygon scan conversion are 
designed with the goal of plotting each pixel in a local polygonal 
mesh neighborhood only once3. The rules for texture magnification 
are designed to appropriately sample a texture when the sample 
location is not the center of a pixel, usually nearest neighbor or a 
higher order interpolation of the surrounding pixels. 
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B 

A 

B 

(a) (b) (c)  
Figure 2. Seams occur due to differences between texture 
magnification (a) and rasterization (b), shown in red (c). 

Figure 2a shows two triangles with integer coordinates in the 
texture map. Figure 2b shows these two triangles rasterized using 
the standard rules [7], with unrasterized white pixels in the 
background. In this figure, the integer pixel coordinates occur at 
the center of the grid cells. Hence the grid cell indicates the set of 
points whose nearest neighbor is the pixel located at the cell’s 
center. Figure 2b illustrates that some points in both triangles A 
and B have background pixels as nearest neighbors, and some 
points in triangle B have pixels rasterized as triangle A because 

_______________________________ 
3 Missing pixels can result in holes or even cracks in the mesh, whereas plotting the 

same pixel twice (once for each of two different polygons) can cause pixel flashing 
as neighboring polygons battle for ownership of the pixel on their border. 

triangle A’s pixels are their nearest neighbors. Figure 2c indicates 
these points in red. 
Higher order texture magnification, such as bilinear or bicubic can 
reduce but not eliminate the effect of background pixels, and 
actually exaggerate the problem along the shared edge between 
triangles A and B. A common solution is to overscan the polygons 
in the texture map, but surrounding all three edges of each triangle 
with a one-pixel safety zone wastes valuable texture samples. 

3.3 Coverage 
The coverage C of an atlas measures how effectively the 
parameterization uses the available pixels in the texture map. The 
coverage ranges between zero and one and indicates the percentage 
of the texture map covered by the image of the mesh faces 
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where A() returns the area of a triangle. We assume the texture 
map is a unit square. 
The coverage of atlases of packed complex polygons was quite 
low, covering less than half of the available texture samples in our 
tests. We also implemented a simple polygon packing method that 
used a single chart for each triangle. This triangle packing 
performed much better than the complex polygon packing, but still 
covered only 70% of the available texture samples. Since distortion 
does not affect the quality of our procedural solid texturing 
technique, the next section shows that the chart images of triangles 
can be distorted to cover most if not all of the available texture 
samples.  

3.4 Relative Scale 
Whereas the coverage measures how well the parameterization 
utilizes texture samples, the relative scale S  indicates how evenly 
samples are distributed across the surface. We measure the relative 
scale as the RMS of the ratio of the square root of the areas before 
and after each chart of the atlas is applied 
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The additional summation factor computes the surface area of the 
object in model space, and normalizes the relative scale so it can 
be used as a measure to compare the quality of atlases across 
different models. A relative scale less than one indicates that the 
atlas is contracting a significant number of large triangles too 
severely, whereas a relative scale greater than one indicates that 
small triangles are taking up too large a portion of the texture map. 
The relative scale of existing atlas techniques is typically less than 
one half. Inefficient packing yields low coverage, such that 
triangles must be scaled even smaller in order to make the complex 
chart images fit into available texture space. 

4. Atlases for Solid Texturing 
This section describes methods for constructing texture atlases 
specifically for procedural solid texturing that overcome sampling 
problems and seams.  
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4.1 Uniform Mesh Atlases 
One way to take as many samples as possible is to maximize the 
coverage of texture map by the atlas. Since distortion does not 
affect the quality of the atlas for our application, we choose to 
deform the model triangles into a form that can be easily packed. 
The uniform mesh atlas arbitrarily maps all of the triangles into a 
single shape, an isosceles right triangle. These right triangles are 
packed into horizontal strips and stacked vertically in the texture 
map. 
Figure 3 demonstrates the uniform mesh atlas. Continuity is 
ignored and the texture map can be thought of as a collection of 
rubber jigsaw puzzle pieces that must be stretched into an 
appropriate place on the model surface. 

The length of each adjacent edge of the mesh triangles is given by 

  
H

M
a

2/
=  (3) 

where H is the horizontal resolution of a square texture map. The 
floor ensures that we can plot a full row of triangle pairs. Note that 
a is not an integer, but non-integer edge lengths can create 
problems with seams. 
Seam Elimination. Seams can be avoided by the careful 
rasterization of mesh triangles. Triangles A and B have been 
rasterized into the texture map as shown before. The triangles in 
Figure 4b are rasterized with half pixel offsets such that no 
background pixe ls will be accessed by the texture’s magnification 
filter. Nonetheless, samples in triangle B near its hypotenuse will 
still return A’s color. Overscanning the hypotenuse of triangle B 
and shifting triangle A right one pixel, as shown in Figure 4c, 
eliminates the seam artifact between A and B. This overscanning 
solution reduces the coverage slightly, but only costs one column 
of pixels for each triangle pair in a horizontal strip. 
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(a) (b) (c)  
Figure 4. Standard rasterization rules disagree with texture 
magnification rules (a) and (b). Overscanned polygons are 

sampled correctly (c). 
Since seams are eliminated, triangles can be placed in any order in 
the uniform mesh atlas. If the model contains triangle strips, then 
these strips can be inserted directly into the uniform mesh atlas 
without overscanning, as the edge they share has appropriate pixels 
on either side of it. 

4.2 Non-Uniform Mesh Atlases 
While the uniform mesh atlas does a good job of using available 
texture samples, it distributes those samples unevenly. Object 
polygons both large and small get the same number of texture 
samples. The uniform mesh atlas biases the sampling of texture 
space in favor of areas with small triangles. While smaller 
polygons may appear in more interesting areas of the model, 
geometric detail might not correlate with texture detail. 
Our goal is to not only use as many samples of the texture as 
possible, but to distribute those samples evenly across the model. 
The non-uniform mesh atlas attempts to more evenly distribute 
texture samples by varying the size of triangle chart images in the 
texture map. 

Area-Weighted Mesh Atlas . An obvious criterion is that larger 
model triangles should receive more texture samples, and so their 
image under the atlas should be larger. We implement this area-
weighted NUMA by first sorting the mesh triangles by non-
increasing area.  The mesh atlas is again constructed in horizontal 
strips, but the size of the triangles in the strip is weighted by the 
inverse of the relative scale of the triangles in the strip. This allows 
larger triangles to get more texture samples. Figure 5 demonstrates 
the area-weighted atlas on a rhino model. 

 
Figure 5: Rhino sculpted from wood and its area-weighted 

non-uniform mesh atlas. 
Length-Weighted Mesh Atlas. Skinny triangles occupy smaller 
areas, but require extra sampling in their principal axis direction to 
avoid aliases. The length-weighted NUMA uses the triangle’s 
longest edge to prioritize its space utilization in the texture map. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Effects of mesh atlas sample distribution 
techniques on a poorly tesselated object containing slivers: 

uniform (a),  area weighted (b) and length weighted (c). 
Figure 6 demonstrates the appearance of artifacts from the mesh 
atlases on the cross of a chess king piece. The procedural texture in 
this example is a simple striped pattern. Every triangle in the 
uniform mesh atlas (a) gets the same number of texture samples, 
regardless of size, resulting in the jagged sampling of the textured 
stripe on the left. The area-weighted NUMA reduces these aliasing 
artifacts, stealing ext ra samples from the rest of the model’s 
smaller triangles. But the sliver polygon needs more samples than 
its area indicates, and the length-weighted NUMA gives the sliver 
triangles the same weight as their neighbors, reducing the aliasing 
completely, leaving only the artifacts of the nearest-neighbor 
texture magnification filter. 

 
Figure 3. Uniform mesh atlas for a cloud textured 

moon. 
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Comparison. We plotted the relative scale of each triangle in the 
meshed rhino model. The ideal relative scale is equal to the square 
root of the surface area, and is plotted in green. Since all of the 
uniform mesh atlas’s chart image triangles are the same size, the 
plot of its relative scale simply indicates the size of the triangle in 
the model. Hence larger triangles are sample starved, but as Table 
1 shows, a larger number of smaller triangles are receiving too 
many samples. 

Mesh Atlas Coverage Relative Scale 
Uniform 91% 1.75 
Area-Weighted 93% 0.66 
Length-Weighted 93% 0.86 

Table 1. Measurement of mesh atlas performance on the 
rhino model. 

The area-weighted mesh atlas does a much better job of 
distributing the samples, and nearly complements the sampling of 
the uniform mesh atlas. The area-weighted NUMA undersamples 
smaller triangles because they are assigned to the remaining scraps 
of the texture map, which also results in its relative scale of less 
than (but closer to) one. 

 
(a)                                                (b) 

 
(c) 

Figure 7. The rhino model color coded by the relative scale 
of each triangle under the uniform (a), area-weighted (b) 
and length-weighted (c) atlases. Green indicates optimal 

sampling, blue indicates too few samples, and red indicates 
too many. 

Figure 7 illustrates the difference with this weighting, increasing 
the samples in the belt of skinny triangles around the rhino’s waist, 
and the stretched triangles around its shoulder, by sacrificing some 
of the samples in the rest of the model. The length-weighting 
heuristic also improves the performance statistics, resulting in a 
relative scale much closer to the goal of one. 

4.3 Multiresolution Mesh Atlases 
Section 4.1 described how seam artifacts were removed by making 
rasterization agree with texture magnification. Texture minification 
also produces artifacts, aliasing when projected texture resolution 
exceeds screen resolution. 
The MIP-map is a popular method for inhibiting texture 
minification aliases [46]. The MIP-map creates a multiresolution 
pyramid of textures, filtering the texture from full resolution in 
half-resolution steps down to a single pixel. Each pixel at level l of 
a MIP-map represents 4l pixels of the full resolution texture map 
(at level 0). 
Assume we have a uniform mesh atlas where the adjacent edge a  
of each of the triangles is a power of two. Then at levels up to la =  
lg a, some pixels from both sides of a triangle pair will combine 

into a single pixel. This averaging is correct only if the triangle 
pair also shares an edge in the surface mesh. 
At level la + 1, four neighboring triangle-pairs in the texture map 
will be averaged together. The uniform mesh atlas cannot be MIP-
mapped at level la, + 1 or above as there is no spatial relationship 
between triangles in the atlas. We can however impose a spatial 
relationship on the uniform mesh atlas that permits MIP-mapping 
above level la. 
At level la, triangle pairs are each represented by a single pixel. At 
level la + 1, the result of averaging neighboring triangles pairs is a 
single pixe l. Hence, the mesh needs to have neighborhoods of 
triangle pairs grouped together, but the grouping need not be in any 
particular order. 
We achieve this grouping by partitioning the surface mesh 
hierarchically into a balanced quadtree. Each level of the quadtree 
partitions the mesh into disjoint contiguous sections with 
(approximately) the same number of faces. 
We implement our face partitioning using a multiconstraint-
partitioning algorithm [18]. Such algorithms have found a wide 
variety of applications in computer graphics, e.g. [9][17][19]. 
The face hierarchy is constructed using the dual of the mesh. The 
partitioning algorithm uses edge collapses to repeatedly simplify 
this dual graph, yielding a hierarchy. The “balanced first choice” 
[18] heuristic is used to balance the hierarchy during 
simplification. We then optimize this graph from the top down, 
exchanging subtrees to minimize the edge length of the boundaries 
of the partitions. The result is demonstrated in Figure 8. 

 
Figure 8. Levels of texture detail in the multiresolution 

uniform mesh atlas. 
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5. Procedural Texturing onto the Atlas 
The solid texture coordinates resulting from the mesh atlases 
provides an efficient and direct method for applying procedural 
textures to an arbitrary object. We apply procedures directly to the 
texture map using the texture map containing solid texture 
coordinates interpolated across the polygon faces as input, 
replacing these coordinates with colors producing a texture map 
that when applied yields a procedural solid texturing of the object. 
Procedural textures can be generated a number of ways. We 
explore two basic techniques. The first technique runs a procedure 
sequentially on the host. The second technique compiles the 
procedure into a multipass program executed in SIMD fashion by 
the graphics controller. We will focus on the Perlin noise function 
[37] as this single function is a widely used element of a large 
portion of procedural textures. 

5.1 Host Rasterization 
The texture atlas technique allows the procedural texture to be 
generated from the host. Host procedures provide the highest level 
of flexibility, allowing all of the benefits of a high-level language 
compiled into a broad instruction set. 
Several fast host-processor methods exist for synthesizing 
procedural textures. Goehring et al. [10] implemented a smooth 
noise function in Intel MMX assembly language, evaluating the 
function on a sparse grid and using quadratic interpolation for the 
rest of the values. Kameya et al. [14] used streaming SIMD 
instructions that forward differenced a linearly interpolated noise 
function for fast rasterization of procedurally textured triangles.  
One could use the graphics processor to rasterize the texture atlas, 
and then let the host processor replace the interpolated solid 
coordinates with procedural texture colors. The main drawback to 
this technique is the asymmetry of the graphics bus, which is 
designed for high speed transmission from the host to the graphics 
card. The channel from the graphics card to the host is very slow, 
taking nearly a second to perform an OpenGL ReadPixels 
command on an Intel PC AGP bus. 
To overcome this bottleneck, our host-procedure implementation 
uses the host to rasterize the atlas directly into the texture map. 
Host rasterization provides full control over the rasterization rules 
and full precision for the interpolated texture coordinates. While 
the host processor is not nearly as fast as the graphics processor at 
rasterization, the generation and rendering of the atlas into texture 
memory is an interactive-time operation, whereas examination of 
the object is a real-time operation supported completely by the 
graphics card’s texture mapping hardware. Its results are shown 
later in Table 3. 

5.2 A Multipass Noise Algorithm 
Following [15][23][35][41], we can harness the power of graphics 
accelerators to generate procedural textures directly on the 
graphics board. 
The noise function could be implemented using a 3-D texture of 
random values with a linear magnification filter. A texture atlas of 
solid texture coordinates can be replaces with noise samples using 
the OpenGL pixel texture extension [31]. 
The vertex shader programming model found in Direct3D 8.0 [24] 
and the recent NVIDIA OpenGL vertex shader extension [31] can 
support procedural solid texturing. In fact a Perlin noise function 
has been implemented as a vertex program [29]. But a per-vertex 
procedural texture will produce vertex colors that are Gouraud 
interpolated across faces. 

Input: solid_map with R,G,B containing s,t,r coordinates. 
Initialize noise = black 
solid_int = solid_map >> bf 

solid_intpp = solid_int + 1/(2b-1) 
weight = (solid_map – (solid_int << bf)) << bi 
for (k = 0; k < 8; k++) { 
  corner = solid_int 
  corner = solid_intpp with glColorMask(k&1,k&2,k&4) 
  randomize corner 
  corner *= if (k&1) then R(weight) else 1 – R(weight)4 
  corner *= if (k&2) then G(weight) else 1 – G(weight) 
  corner *= if (k&4) then B(weight) else 1 – B(weight) 
  noise += corner 
} 
Output: solid noise texture map 

Figure 9. Multipass noise algorithm.  
We instead implemented a per-pixel noise function using multipass 
rendering onto the texture atlas. Assume the three channels (R,G,B) 
of our buffers have a depth of b bits5. We will assume a fixed-point 
representation with bi integer bits and bf fractional bits, b = bi + bf. 
The algorithm in Figure 9 computes a random value in [0,1] at the 
integer lattice points, and linearly interpolates these random values 
across the cells of the lattice. 
SGI Implementation. We implemented the noise function in 
multipass OpenGL on imaging workstations using the 
glPixelTransfer and glPixelMap functions. The glPixelTransfer 
function performs a per-component scale and bias, whereas 
glPixelMap performs a per-component lookup. The results appear 
in Table 2. 
NVidia Implementation . We also implemented a noise function 
for consumer-level accelerators using the NVidia chipset. Since the 
NVidia driver did not accelerate glPixelTransfer and glPixelMap, 
we used register combiners to shift, randomize and isolate/combine 
components. 
Randomization on the NVidia controller was particularly difficult, 
as its driver did not accelerate logical operations like exclusive-or 
on the frame buffer. Instead, we used the register combiners to 
display one of two colors depending on an input color’s high bit, 
then used the register combiners to shift the input color left one bit 
(without overflowing and causing a clamp to one). This ended up 
generating 375 passes (!). The source code for these operations can 
be found on the accompanying CD-ROM. 
 Implementation Execution Time 

SGI Solid Impact 1.3 Hz 
SGI Octane 2.5 Hz 
NVidia GeForce 256 0.9 Hz 

Table 2. Execution times for the multipass noise algorithm. 

Table 2 shows the NVidia implementation did not perform as well 
as the SGI implementation. Profiling the code revealed that the 
main bottleneck was the time it took to save the framebuffer in a 
texture, adding an average of 3 ms per pass for 354 of the passes. 
OpenGL currently does not support rendering directly to texture, 
and the register combiner did not directly support the blending of 
its output with the destination pixel currently in the frame buffer. 

_______________________________ 
4 The functions R(), G() and B() return a luminance image of t he channel. 
5 Framebuffers currently hold only 8 or 12 bits per channel though there is an 

extension that supports 32-bit floating point, and indications that floating point 
buffers may soon be supported by a larger variety of graphics hardware and drivers. 
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The randomization step in the SGI implementation produced white 
noise using a glPixelMap lookup table of random values, whereas 
the NVidia implementation blended random colors, yielding 
Gaussian noise. If desired, one could redistribute the Gaussian 
noise into white noise with a fixed histogram equalization step. 

6. Conclusion 
We have shown how the texture atlas can facilitate the real-time 
application of solid procedural texturing. We showed that for this 
application, the texture atlas need not be concerned with distortion 
nor discontinuity, but should instead focus on sampling fidelity. 
We introduced new mesh-based atlas generation schemes that 
more efficiently used available texture samples, and non-uniform 
variations of these meshes distributed these samples more evenly 
across the object. We also used a mesh partitioning method to 
construct a MIP-mappable atlas. 
The texture atlas allows solid texturing procedures to be applied to 
the texture map, allowing efficient multipass programming using 
the accelerated operations available on the graphics controller as 
they become feasible. 
The system makes effective use of preprocessing. The procedural 
texture needs to be resynthesized only when its parameters change, 
and the texture atlas needs to be reconstructed only when the 
object changes shape. Specifically, if the position of the object’s 
vertices move, but the topology of the mesh remains invariant, then 
the procedural solid texturing generated by this method will adhere 
to the surface [1]. This is a useful property that prevents texture 
“swimming,” such that for example the grain of a warped wood 
plank follows the warp of the plank. 

6.1 Interactive Procedural Solid Texture Design 
We used the methods described in this paper to create a procedural 
solid texture design system that would allow the user to load an 
object and apply a procedural solid texture. This system can be 
found on the accompanying CD-ROM. Since the procedural solid 
texturing is applied as a standard 2-D surface texture mapping, the 
design system supported full real-time observation of a 
procedurally solid textured object. Using the techniques of Section 
4, the object did not suffer from any seam artifacts, and aliasing 
was reduced by making good use of the available texture samples. 
We also allowed the user to interactively change the procedural 
solid texturing parameters. Using the techniques described in 
Section 5.1, we were able to support interactive-rate feedback to 
the user, such that the user could observe the result of a parameter 
on the procedural solid texture while dragging a slider. 
The software procedural texture renderer simultaneously rasterized 
the texture atlas into texture memory and applied the texturing 
procedure to the texture atlas. We increased the responsiveness of 
our system by having this renderer render a lower resolution 
interpolated version of the atlas during manipulation, and replace it 
with a higher resolution version at rest. The rendering speed of this 
system is shown in Table 3. 
 Noise Octaves Atlas Res. Procedural Synthesis Speed 
  1 2562 9.09 Hz (18 Hz) 
  1 5122 2.56 Hz (4.55 Hz) 
  1 10242 0.72 Hz (1.30 Hz) 
  4 2562 6.25 Hz (10 Hz) 
  4 5122 1.82 Hz (3.03 Hz) 
  4 10242 0.40 Hz (0.76 Hz) 

Table 3. Execution times for procedural texture synthesis 
into the texture atlas. Parenthetic times measure lower 

resolution synthesis during interaction. 

6.2 Applications 
We have focused this paper on the application of real-time 
procedural solid texturing, though the techniques described appear 
to impact other areas as well. 
Solid Texture Encapsulation. Unlike surface texture coordinates, 
solid texture coordinates are not uniformly implemented by 
graphics file formats.  Using surface texture of a solid texture 
allows the texture coordinates to be more robustly specified in 
object files and also allows the solid texture to be included as a 
more compact texture map image instead of a wasteful 3-D solid 
texture array. 
3-D Painting. The meshed atlas techniques can also be used to 
support 3-D painting onto surfaces [13]. The atlas provides an 
automatic parameterization. The discontinuities of the 
parameterization do not impact painting as the texture atlas 
maintains a per face correspondence between the surface and the 
texture map. The meshed atlas techniques presented in Section 4 
also improve surface painting by using as many texture samples as 
possible distributed evenly across the surface. 
Normal Maps. The normal map [3][8] is a texture map whose 
pixels hold a surface normal instead of a color. Normal maps are 
used for real-time per-pixel bump mapping using dot-product 
texture combiners found in Direct3D and extensions of OpenGL. 
The meshed atlas generation techniques can be used to create well-
sampled normal maps since normal maps do not require continuity 
between faces. 
Real-Time Shading Languages . Recent real time shading 
languages [35][41] have been developed to support procedural 
shaders, including texturing and lighting, by converting shader 
descriptions into multipass graphics library routines. In particular, 
Proudfoot et al. [41] focuses on the difference between per object, 
per vertex and per fragment processes in real-time shaders. The 
texture atlas supports additional categories of view-dependent and 
view-independent processes. View dependent processes utilize 
multipass operations to the framebuffer, whereas view independent 
processes utilize multipass operations to the texture map, ala 
Section 5.2. The results of view independent processes can be 
stored and accessed directly from the texture map, accelerating the 
rendering of real time shading language shaders. 

6.3 Future Work 
While this work achieved our goal of real-time procedural solid 
texturing, it has also inspired several directions for further 
improvement. 
Direct Manipulation of Procedural Textures . The interactive 
procedural solid texture design system is a first step. Another step 
would be to allow the sliders to be bypassed, supporting direct 
manipulation of procedural textures. The user could drag a texture 
feature to a desired location and have the software automatically 
reconfigure the parameters appropriately. 

Preservation of Mesh Structure . The mesh atlases do not 
preserve the object’s original mesh structure, and our mesh atlas 
processing program outputs multiple copies of shared mesh 
vertices with different surface texture coordinates. This increases 
the size of the model description files, and may cause the resulting 
models to render more slowly. Preservation of mesh structure, or at 
least triangle strips, would be a useful addition to this stage of the 
process. 
Higher-Order Texture Magnification. Section 4.1 described the 
special overscanning measures taken during rasterization of the 
texture atlas to eliminate seam artifacts. This overscanning works 
when a nearest neighbor texture magnification filter is used. A 
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linear texture magnification filter would make the textures appear 
less blocky, but will require overscanning by one pixel along all 
edges reduces the number of available samples on polygon faces 
creating additional seldom used samples on polygon edges. 

Atlas Compression . The texture atlas resembles the codebook 
used in vector quantization. The number of faces in the atlas could 
be reduced by allowing the atlas to no longer be one-to-one, and to 
let triangles with similar procedural texture features to map to the 
same location in the texture atlas. This kind of atlas compression 
would increase the number of available texture samples with larger 
chart images in the texture atlas. 
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